

In this paper we use the following hyperbolic identities:

$$\begin{cases}
\sinh x = \frac{\tanh x}{\sqrt{1 - \tanh^2 x}} = \frac{1}{\sqrt{\coth^2 x - 1}} \\
\cosh x = \frac{1}{\sqrt{1 - \tanh^2 x}} = \frac{\coth x}{\sqrt{\coth^2 x - 1}}
\end{cases} \tag{1}$$

The propagation of a relativistic (electromagnetic) plane wave in relativistic spacetime time along the x-axis and of amplitude A=1 is described by the following complex function:

$$e^{i(\omega t - kx)} \tag{3}$$

The position vector in hyperbolic spacetime is:

$$\vec{s} = ct \, \vec{e} + x \, \vec{i} \tag{4}$$

where the versors of the \vec{e} and \vec{i} axes have the properties:

$$\vec{e} \cdot \vec{i} = 0; \quad \vec{e}^2 = 1; \quad \vec{i}^2 = -1$$
 (5)

We write the wave phase successively:

$$\omega t - kx = \left(\frac{\omega}{c}\vec{e} + k\vec{i}\right) \cdot (ct\,\vec{e} + x\,\vec{i}) \tag{6}$$

To simplify further calculations we make the following notations:

$$\vec{\Omega} = -\frac{\omega}{c}\vec{e} + k\vec{i} \tag{7}$$

We continue the math.

1) If $\frac{\omega}{c} > k$ then:

$$\Omega^2 = \frac{\omega^2}{c^2} - k^2 \tag{8}$$

There is a unique α with the properties:

$$\begin{cases}
\omega = c\Omega \cosh \alpha = \Omega \frac{v_{\varphi}}{\sqrt{\frac{v_{\varphi}^2}{c^2} - 1}} \\
k = \Omega \sinh \alpha = \Omega \frac{1}{\sqrt{\frac{v_{\varphi}^2}{c^2} - 1}}
\end{cases}$$
(10)

$$v_{\varphi} = \frac{\omega}{k} = c \coth \alpha \tag{11}$$

$$\begin{cases} d\omega = c\Omega \sinh \alpha d\alpha & (12) \\ dk = \Omega \cosh \alpha d\alpha & (13) \end{cases}$$

$$dk = \Omega \cosh \alpha d\alpha \tag{13}$$

$$v_g = \frac{d\omega}{dk} = \frac{c^2}{v_\varphi} \tag{14}$$

2) If $\frac{\omega}{c} < k$ then:

$$\Psi^2 = k^2 - \frac{\omega^2}{c^2} = -\Omega^2 \tag{15}$$

$$\omega = c\Psi \sinh \alpha = \Psi \frac{v_{\varphi}}{\sqrt{1 - \frac{v_{\varphi}^2}{c^2}}}$$
(16)

$$\begin{cases}
\omega = c\Psi \sinh \alpha = \Psi \frac{v_{\varphi}}{\sqrt{1 - \frac{v_{\varphi}^2}{c^2}}} \\
k = \Psi \cosh \alpha = \frac{\Psi}{\sqrt{1 - \frac{v_{\varphi}^2}{c^2}}}
\end{cases}$$
(16)

$$\frac{\omega}{k} = c \tanh \alpha = v_{\varphi} \tag{18}$$

$$\begin{cases} d\omega = c\Psi \cosh \alpha d\alpha & (19) \\ dk = \Psi \sinh \alpha d\alpha & (20) \end{cases}$$

$$\frac{d\omega}{dk} = c \coth \alpha = v_g > c \tag{21}$$

In both cases:

$$v_{\varphi}v_g = c^2$$
 (22)

Consider the superposition of two electromagnetic waves of different but close frequencies.

$$\psi = e^{i\vec{\Omega}_1 \cdot \vec{s}} + e^{i\vec{\Omega}_2 \cdot \vec{s}} = e^{i\vec{\Omega} \cdot \vec{s}} (e^{i(\Delta \vec{\Omega} \cdot \vec{s})} + e^{-i(\Delta \vec{\Omega} \cdot \vec{s})})$$
(23)

where

$$\begin{cases}
\vec{\Omega} + \Delta \vec{\Omega} = \vec{\Omega}_1 \\
\vec{\Omega} - \Delta \vec{\Omega} = \vec{\Omega}_2
\end{cases}$$
(24)

$$\vec{\Omega} - \Delta \vec{\Omega} = \vec{\Omega}_2 \tag{25}$$

$$\vec{\Omega} = \frac{\vec{\Omega}_1 + \vec{\Omega}_2}{2} \tag{26}$$

$$\Delta \vec{\Omega} = \frac{\vec{\Omega}_1 - \vec{\Omega}_2}{2} \tag{27}$$

$$\vec{\Omega} \cdot \vec{s} = \omega t - kx \tag{28}$$

$$\Delta \vec{\Omega} \cdot \vec{s} = \Delta \omega t - \Delta kx \tag{29}$$

Plane wave equation

$$\psi = 2e^{ik(v_{\varphi}t - x)}\cos\Delta k(v_{q}t - x) \tag{30}$$

Subluminal group velocity: please take a look at the animation here Superluminal group velocity: please take a look at the animation here Light velocity: please take a look at the animation here