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The measurement of time is based on periodic processes. A periodic process
is a process that occurs in continuously repeating identical segments. Such



a process is useful as a more or less accurate clock. A certain number of
repetitions of such process sections defines the unit of time. Particularly reg-
ular periodic processes are pendulum oscillations, elastic oscillations, atomic
oscillations and the rotation of the earth.

In classical physics a clock once calibrated will theoretically always show
the correct time, no matter how it moves and everywhere in space. Two
clocks running synchronously side by side and at relative standstill are sent
on an arbitrary journey through space. After that they are brought side by
side again. Also now the clocks run synchronously. This is the postulate of
absolute time in classical physics.

We want to represent movements graphically. A point in motion through
space is determined if its position is known at any time. To specify the posi-
tion and the time, we need a reference frame. A reference system consists of a
coordinate system with a clock at the origin and an observer who can process
all the data. The movement is concretely indicated by the three coordinates
as functions of the time. If x, y and z are the Cartesian coordinates and t is
the time, then the motion is completely described by the functions:

z=x(t) (1)

y=yl(1) (2)

z=z(t) (3)

We want to represent these functions graphically. Of course, this is only
possible to a limited extent, because we cannot represent more than three
dimensions. We would need four dimensions, three for space and one for
time. But we can only represent one or two dimensions of space and, as
the third dimension of the graph, time. The graphic thus created, we will
call space-time diagram in the following. This is still nothing more than the
graphic representation of the movement, no ”space-time” and has still no
independent physical reality.

A point in the space-time diagram is called an event. The graphic repre-
sentation of the movement of a point is called world line of the point. The
motion of a point with constant velocity is represented by a straight line.
And now we try to define a norm in the space-time diagram. To do this,
we give the space-time diagram the structure of a vector space. We write a
vector x in the following way:



Figure 1:

Z=1tE+al (4)

E is any vector on the t-axis and I on the x-axis.
If |Z] denotes a norm from the vector & and A is any real scalar, then the
definition axiom of the norm states:

AZ] = |- |7] ()

If two norms are defined, then both satisfy condition (2.) and therefore
condition:

Azl [ATl

4,

(6)

We define a norm such that we associate with each vector Z a unit vector z°
in its direction, i.e.

7= AP (7)

and which has the same norm in all directions (see Figure 2).If the vector 2"
takes all directions around the origin of the coordinate system, it describes
a three-dimensional hypersurface in the space-time diagram. All different
norms that can be defined differ by the shape of this hypersurface.

The hypersurface defined in this way we call unit surface. So, to define the
norm associated to this unit surface, we intersect the straight line defined
by the vector ¥ with the unit surface, obtaining the vector, and the norm is
defined using another arbitrary norm (e.g., the Euclidean) of the following
dimensions:

= |f’E klidisch =0
7| = - Euklidisch |7 (8)
‘fO‘Euklidisch
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Figure 2:

Let us apply these findings to a classical space-time diagram. Let us de-
fine the unit surface as a hyperplane parallel to space (see Figure 2.). The
constant value for |Z¥] we choose:

=1 (9)

Figure 3:

In the following, we will use the points with numbers: 1, 5, 13,... or with
letters: A, B, O,... etc. with a colon as separator. The straight lines with
{10 : 12} where 10 and 12 are two points. Vectors with |10 :12), lines
[10 : 12], norms |10 : 12|. We want to represent the Galilean transformation
geometrically. One projects the point 0 on the coordinate axes and one
determines the distances of the axes along between projection and coordinate
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origin with the help of the norm. The meaning of different geometrical objects
is the following.

°=10:1), #°=10:2] x=13:0], 2/ =14:0, ot=13:4| (10)

The norm is any norm satisfying axiom (5). The unit surface in our 2-
dimensional space-time diagram is the straight line {1 : (A)}. Because {1 : 2}
is parallel to {3 : 4}, we have:

0 :3] O :4]
— 11
0:1] |0 :2| (11)
By defining the times, we have

|03 , 104

t=— = =y 12
0 : 1] O : 2| (12)
From figure 3 it can be seen:
14:0]=|3:0]—3:4| (13)
=z —ut (14)

But this is the Galilean transformation. The space-time diagram is not in
contradiction with Galilean physics. We will show that it is not in con-
tradiction with Einsteinian physics either. Everything points to the fact
that the processes take place in a four-dimensional physically existing space-
time, whose one possible representation is the space-time diagram. Having
recorded the movements, we examine these records. And not in original size,
but reduced so that it fits on a piece of paper or on this screen. Especially
the lengths and the velocities are drastically reduced. Even if no velocities
greater than that of light existed in the universe, on our model the speed of
light ¢ is reduced to, say, lem/s, and we can use true light to observe the
whole thing. We then examine the recorded past, and we can run it at a
speed greater than c, and move backwards in time without any contradic-
tion. Something just happened or didn’t happen, we can’t change anything
in the record without destroying the association between past reality and
record. If we represent the movements graphically, we make nevertheless the
step to consider the time as a coordinate. A serious consequence of this is
that the absoluteness of the simultaneity of two events occurring at different



places in space must be abandoned. A central issue is the propagation of
electromagnetic waves, including light. In accordance with the experimental
results, we postulate that the light propagates in the same way, regardless
of the movement of the light source. So, the light is released into the ether,
which then takes care of the propagation, without the initial velocity playing
a role. This is not the case for balls or grant balls, their motion depends
on the initial velocity with which they were shot. Actually, we cannot speak
of velocity yet, because we have not yet defined simultaneity and the mea-
surement of time. Therefore, we cannot speak of the speed of light at all
yet. We can illustrate this postulate in the animation 1. (Include animation)
The two white points correspond to, say, two spaceships moving at different
speeds. They meet at point O, from where they emit two light signals (the
red dots), together with two projectiles (the green dots) from identical firing
devices. The light signals reach target B together, but the spaceships and the
projectiles separately. We will establish this property of light to propagate
independently of the speed of its source as an axiom of relativity. Be careful,
this is not the constancy of the speed of light, i.e. the speed of the red points
with respect to the white ones. By the way, this is also true, but needs the
proof. Here perhaps only so much: the time measured by identical clocks in
the spaceships is not absolute, but depends on the movement of the clocks.
About it however something later in this letter.

If we graphically represent the absoluteness of light propagation, it looks like
in Figure 4: The observer with worldline {1} emits a photon whose motion
is described by worldline {A}. The same for observer {2} with world line of
photon {B}. The axiom of the absoluteness of the light propagation says that
the straight lines { A} and { B} are parallel in the space-time diagram. Having
created a space-time diagram for the motion of different points with the help
of a coordinate system, we will delete the coordinate axes and keep only
the world lines. We establish the axiom that the world lines are absolute,
regardless of whatever coordinate system we may draw in the space-time
diagram. We want to define now the simultaneity as an observer equipped
with an arbitrary clock with a straight world line detects it. We assume
that the observer sends the picture of his clock embedded in a TV signal
constantly as a spherical wave and receives the reflections of the signal. Let
any event E be the reflection of this signal. We define the time of the event
measured by this clock as the middle M between the emission of the signal
A and the reception of its reflection B on the world line of the clock (see



Figure 4:

figure 4). A standard relativistic mental clock was introduced to use the
absolute propagation of light for the measurement of time. The back and
forth movement of a light pulse between two parallel mirrors serves as a
periodic process. Let us now consider two inertial systems that measure
time using light pulse clocks.

But we need to take the length of the two light pulse clocks equal, without
stopping their movement so that they could be superimposed and compared.
Therefore we choose the distance [O:L] along the y axis as the starting po-
sition of the two clocks. This is correct only if the events O and L are
simultaneous in both reference systems. We now want to prove that this
is the case. The observer B emits a spherical light wave (event 1) which is
reflected by the mirror of the light pulse clock and is received in event 2. The
same is true for observer B”. We have to show that O is the center of both the



Figure 5:

distance [1:2] and the distance [17:2’]. The wavefront emitted from 1 (with z
= 0) has the equation:

=3t —t)’ (15)

The quantity c is a suitably chosen constant needed to write the equations
of various geometric objects in the space-time diagram. After the exact
definition of the unit of time and length, it will turn out that c is the speed
of light in the coordinate system O:t:x:y. The provisional absence of the units
must not bother us further, because we work in a geometrical representation,
where all units are lengths anyway. The exact assignment between units in
reality and the scaling of the axes, comes later. Therefore we do not work
with numerical values, but with identifiers. Event L (x=0, y=1, t=0) belongs
to this wavefront. We put its coordinate in the upper equation and get the

equation:
I? =ty (16)
We solve for t; and obtain:
he -t (17)
L= ¢

The wave reflected in L in all directions has the equation:

22+ (y — 1) = A (18)



This intersects with the {O : t} axis (x=0, y=0) in event 2:

[

P =72, ty=- (19)
c
The center between 1 and 2 has the t-coordinate:
par
t1 + &9 1 ( [ l)
=—|—+-]=0 20
2 2 c + c ( )

The x-coordinate was always 0, everything took place in the plane {O : t : y}.
So, the middle between 1 and 2 is the event O. Similarly, we show that the
middle between 1’ and 2’ is also O. So, L and O are simultaneous events for
both observer B and B’ We use the distance [O:L] as the initial position of
the two light pulse clocks.

Figure 6:

The axis {O : t} is also the worldline of the mirror Sy of the light pulse clock
of observer B. The worldline of the mirror Sy of the same is {L : 1}. The
same is true for observer B’ In the event O both observers emit a spherical
light wave. This wave intersects the world line of mirror Ss in event 1 and
that of mirror S5 in event 1’. Figure 6 is self-explanatory. The unit time in
the {O : t} direction is {O : 2} and in the {O : ¢} direction is {O : 2'}. Let
us denote {O : L} = 1. The spherical wave from O has the equation:

v? 4y = At (21)
This wave intersects with the world line of the mirror S5 in event 1, and

with the world line of the mirror S} in 1’ The straight line {L : 1} has the
equations:
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r=0, y=I (22)
Substituting (22) into (21), we get the coordinates of the intersection:

th=-, 1=0, y=I (23)
C

The light wave reflected in event 1 has the equation:

(z—2)’+(y—yp)’ = @—t) (24)
This wave again reaches observer B in event 2. And so on, and so on.... We
write the results, namely the coordinates of events 2 and 2’:

21 2l/c
ty = - 2= 0, y2 =0ty = T Ty = vty, yr =0 (25)

If we eliminate from these equations, v and 1, we get the equation of unit
area:

Aty — x5 = 'ty (26)

This is the equation of a hyperbola in the space-time diagram. The vector
7 describes a hyperbola in the 2-dimensional space-time diagram. We write
this vector as follows:

fo = toE + ZUof (27)

where E is the unit vector afflicted with measure in the direction of the axis
{O : t} and T in the direction of the axis {O : z}. By t; and z, we have
denoted the previous to and xo when ty, = 1.

20 _ E+vl (28)
’U2
=

We try to define the scalar product of ¥ with itself and determine the scalar
products between the basis vectors E' and [ among themselves. Then it is
easy to define the scalar product between any two vectors.
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S0\ 2
(i) P
==
¢ (29)
v B E-f+212
- = = v v
@ (29 (20 (@)
The last equation must hold for all v’s, so:
B BT 1 .
(.CI_Z"O)2 - b (a—j»O)Q - Y (3—7»0)2 - _g ( )

Here we can choose a quantity by convention, e.g. I2 =1 as in 3-dimensional
space. The other scalar products are then uniquely defined:

(:?0)2 = -, E? = —c2, E-T=0 (31)

We are forced to admit negative scalar products of vectors with themselves.
Thus, the norm is not positively defined. The zero scalar product still means

orthogonality. If we normalize the basis vectors, we get for the vector z:
y : il
=1 ‘ ’ + ’[ ‘ (32)
25 ]
For any vector ¥ we drop the index 0:
7= ct E + ] te 4 xi (33)
r=c x = cte€ + x1
VB2 /P
The newly introduced basis vectors € and i have the properties:
= =1, P=%=1 ¢&1=0 (34)
—F2 ]2

Because this norm is not positively defined, in what follows we will speak of
the quadratic norm, which from now on we will simply call norm. Its axiom
of definition is:

IAZ]| = A% || (35)

The norm defined by the above scalar product is in the 2-dimensional space-
time diagram:

12



(36)

This is called the Minkowskian norm. Einstein’s entire special theory of
relativity is based on it. We call the first order norm length. It is given by:

7] = V=22 = V22 — 52 (37)

For now, it is defined only for events for which ct is greater than x. Because
the norm is not defined positively, it can also be zero for x=ct. Vectors
with negative norm (in the sense of formula (36) are called "time-like”, with
norm zero "light-like” and with positive norm "space-like”. But what is the
geometrical and physical interpretation of the length of a time-like vector? To
answer this question, let us consider animation 2. Two observers with clocks
constantly send TV signals with the image of their clocks. Each of them also
receives the TV signal of the other. Thus, each observer sees his own clock
and the image of the other’s clock. The time in the picture runs slower than
the time displayed by the clock. The observers are equal exactly when the
ratio of the two displays, clock and picture, is equal for both observers. In
animation 2, {O:t} is the world line of observer B, and {O:t’} is the world
line of observer B’. In event 2, observer B”s clock shows time t}, and B’s clock
image shows time ¢;. In event 3, observer B’s clock displays time ¢3, and the
image received by B’; displays time t},. Because of the equality of B and B’,
we must have:

thy ty

2 = 38
LT (38)

thus

ty =tz (39)

Let’s calculate the coordinates of points 1, 2, and 3. We assume the coor-
dinates of point 2 to be known (ts, z5). The straight line {1 : 2} has slope
c and contains the point 2, so it has the equation: © — zy = ¢ (t — t9) with
x9 = vty This straight line intersects the axis {O : t} with the equation:

z=0 (40)
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at point 1 with coordinates (t1, x1)

—vty = ¢ty — cto (41)
(c—v)ty =cty (42)
v
tl = (1 — C) tQ, Tr1 = 0 (43)
The straight line
r—x9=—c(t —tg) (44)

This straight line intersects the axis

ty = (1 + Z) ty, a3=0 (45)

And now we can calculate t):

b=t = (- (14 =1 - (46)

To obtain a relationship between ¢, to, and x2, we square the last equation

x
and replace v with t2
2

At = At — o (47)
But this is the Minkowskian length of the vector ctye + o1, in the figure
vector |O : 2). One can show also in the case of a curved world line that a
light pulse clock measures the Minkowskian length of its world line. We note
that if the light pulse clock were moving at a speed greater than the speed
of light ¢ with respect to any reference frame, the light pulse clock would not
work. If the light pulse is reflected by one of the mirrors, it will not reach the
other mirror, because it will run away with greater speed. If greater speed
than that of the light is possible experimentally, then one must reformulate
the theory of relativity. But with the method shown here, this would not

be too bad. Back to the animation 2., one can also show that besides the
relation

0:2*=|0:1]-]0: 3] (48)

also applies
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0:37=10:2|-]0 : 4 (49)

This completes the equality of the two reference frames. Here all lengths are
Minkowskian lengths. In the 4-dimensional space-time diagram, the light-like
vectors play a special role. All of them lie on a 3-dimensional hypersurface
with the equation:

AP -t =yt =22 =0 (50)

If # = cté+ i + yj+ 2k is the 4-dimensional location vector, this equation
takes this form:

72 =0 (51)

This is the equation of a hypercone, called a light cone. All vectors that are
inside the light cone are time-like, those from outside are space-like. If any
vector is time-like/light-like /space-like, then all vectors that are on the same
straight line are also time-like/light-like/space-like. Here is the proof: if two
vectors are on the same straight line, then there exists a scalar A such that
between the two vectors there exists the relation:

T = Ao (52)

and therefore:

|71 = A" |72 (53)

The two norms have the same sign (q.e.d.). Therefore the whole world line is
called time-like/light-like/space-like. A working clock has a time-like world
line. But what condition must two events satisfy to be simultaneous with
respect to any clock with a straight world line? As we defined the time of
an event above, we draw in the space-time diagram the light cone of event 0.
This light cone has the equation:

(& — 79)* =0 (54)
The world line of the clock has the equation:

F=a+ \0 (55)



where @ is the 4-dimensional location vector of a fixed but arbitrarily chosen
point of the straight line, and 0 is a constant but otherwise arbitrary vector
along the straight line. A is the parameter of the straight line. To further
determine the meaning of the vector w, we derive the last equation after A:

€+ ——1+ — =Cc—— e+—z+

cat' e Tear ar Al k>

(56)
We choose A = ct such that the coefficient before the bracket vanishes, and
the vector w becomes:

dz dt <4 ldz- 1dya 1dzk> dt< Upw Uy~

e+—z+ J+ k (57)

The clock’s world line intersects the hght cone in two points 1 and 2, corre-
sponding to parameters A\; and A2. The middle of the line [1:2] corresponds
to the time of the event 0.

(@+ M6 —Z)* =0 (58)
A2 + 20 (@ — Bp) A+ (@ — T)* = 0 (59)

This is a second degree equation in A. Its roots A\; and A, are the parameters
of the intersections. The parameter of the center is:

A+ Ao
2
So, the condition that two events x1 and xo are simultaneously opposite the

Ao =

— W (@ — Ty) (60)

clock with velocity ¥ is:

GA—T) =@ (A—T) & @(A—5)—d@—T)=0 (61)
w(a—fl—§+f2)=0 = ?ﬁ(_)g—ﬂ_fl)zo = Iv(fl—fg)zo

The final result of the condition is:
Uy v v,
C(tl—tz)—;(331—$2)—f(y1—y2)—;(21—22):0 (63)

Consider again animation 2. The point 6 is the projection in the reference
frame S of the point 2 on the {O:t} axis. The point 7 is the projection in the
reference frame S’ of the point 3 onto the {O:t’
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0:6] ]O:7

0 :6]=ty, |0:2]=1t,, |0:7]=1t;, |0:3]=1t;

0:2]  |0:3|
(64)
ty
6" ()
ot tot t

, _
% T nfi-g -z

For point 4, a similar relationship holds as for point 2:

ﬂ—t«l—g% (67)
4 — U4 CQ

But ¢4 we can calculate from analytic geometry by the method shown above:

iﬁzzcz(jf o , T=T4, =1 (68)
vty = cty — ct3 (69)
t
b — 1 _3 % (70)
- ts \llzﬂ_tg\ll—i_g (71)
10 c? 1-2

th=10:7 = 72

L=10:7 ; ; (72

th 4+t 1 t 2 14+ ¢ 14+ 1 t

o+t 1 3@ 1—U—+t3 +5 y +5 _ 3 4y
(73)

q.e.d.

We have shown so far that in the 2-dimensional space-time diagram the di-
rection of the one straight line consisting of simultaneous events with respect
to a clock is orthogonal to the clock’s world line. We now want to show
that this is the direction of the x’-axis. So all straight lines consisting of
simultaneous events are parallel to each other. For this we have to prove
that the slope of this straight line does not depend on the events it contains,

17



but at most on the velocity v. In animation 2, the straight line consisting of
simultaneous events with event 3 opposite observer B’, is the straight line

— + to+1 to+t
m:x’? 1'3::62 $4—O2 4—t3: U(2+ 4) = U2t3 (74)
t; — 13 2 2 to+ty—2t3 1 — 2%
t3 t3
ty = , tyg= 75
= pew B (75)
2t 2t 2 2
= - 3t - 2 :1_% (76)
t2 + t4 1f£ + 1,32 1 02 c
(& (& 7?
2
v c
m = = — 7
== "
q.e.d. Thus, the equation of the x’-axis is:
2
c
—— 78
p=C (75)

It is parallel with the straight line {3:7}. And now we want to define the
length measurement. We need to compare the length units without stopping
the length unit bars. In Figure 7, the straight line {A : B'} is the world line
of the second end of the scale from the S coordinate system. The distance
[O:A] is the unit of length along the axis {O : x}. The distance [O:A’] is
the unit length along the axis {O : 2'}, and the straight line {A’ : B} is the
world line of the end A’ of this scale.

Figure 7:
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The distance [O:B’] is the appearance of the scale from observer B to observer

B’. The distance [O:B] is the appearance of scale from B’ for B. Both observers

assert the same proposition, for example: "The appearance of your scale for

me is 0.8 of my scale”. On the basis of this sentence (including the numerical

value) the reference frames cannot be distinguished. Therefore the reference

systems are completely equal. And therefore they have equal units of length.
Therefore, the Minkowskian length |O : A| is equal to the Minkowskian length

O = A
O:B| |0:DB
O: A  |O: A
If the point C is the projection of A’ onto the axis
O :B'|  ]0:A]
O: Al |O: O]
SO:
O :B| |0:A] ,
= O:Al=|0:A
O: Al |0:C| | =1 |

With the labels:

O:Bl=uzp, |0:Al=x4, [0:C|=zy, |0:A|=2
thus holds:

r4% = xpT Y

The point B is the intersection between

{a:—xA/:U(t—tA/)

If we replace v in the last equation by 02%, thus:
Al
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(82)

(83)

(85)

(86)
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20 2

v ctyr
— 88
o (88)

2

2t = xa? — Pty (89)

If we multiply by an arbitrary A? and then root, we get the Minkowskie length
of a space-like vector:

s = Va2 — 2? (90)

In summary, the length of an arbitrary vector in the 2-dimensional space-time
diagram is -

& = |7 = et — a2 (91)

And now we geometrically derive the Lorentz transformation.

ta t

X
Figure 8:
We use analytic geometry again. Point (17)
C2
.I—ZCQ:*(t—to) (92)
v
r=ut (93)
, w=ay, t=tp (94)
2
() (% (%
tl/ — t() = o) (ZEll — .T()) = 5 ’Utll — g&?o = gtl/ — ?l’o (95)
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The coordinate ' is the length |O:1’| provided with the sign of ¢;/.

2
v
lct'| = \/02751,2 2= \/02t1/2 — 02y = [ety| |1 — -
c
2
v
t=tin1——
c
v
I to — 2%0 1 v?
t = . -5
2
to — %0
t = c
2
2

Point (2)

) t:tg/, T = Ty

{x—xgzv(t—to)

v
t = ?x
v 02
Ty —XTo =V —=Ty — Vg = =Ty — Vi
c? c?
02
1—— LUQ/—LL’()—UtO
2
Ty — Vi v
Tor = ~ ﬁ , tgl = ng,

The coordinate 2’ is the length |O:2’| provided with the sign of xy. .

2| = Vao? — ly? = \|zo? — - (2”') =\ T2? = ry? = |wy]-
C C

2

/ ()
r = Tor 1—7
C
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(96)

(97)

(100)

(101)

(102)
(103)
(104)
(105)

U2
1=
C

(106)

(107)



With the labels:

Tr = Xy, tzto,

is the coordinate transformation:

(108)

(109)

(110)

(111)

(112)

This is the well-known Lorentz transformation for the coordinates t and x.
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