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E = mc2
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We start from the second principle of mechanics, written with the help of the momentum

F⃗ = dp⃗

dt
(1)

and we express the kinetic energy W

dW = F⃗ dr⃗ (2)

according to the kinetic energy variation theorem. Further, we obtain:
We denote everywhere in this article, the scalar product with point or juxtaposition, and
the square of a vector will be the scalar product of the vector with itself

−dWdt + dp⃗ dr⃗ = 0 (3)

But, we have established in relativistic kinematics the expression

cdte⃗ ⊕ dr⃗ = dx⃗ (4)

introducing the notions of spacetime, quadravector and Lorentz transformation. c is the
speed of light in vacuum, and e⃗ is the unit vector on the Ot axis, with property e⃗ 2 = −1.
The operator ⊕ is the direct sum between vector spaces. Since 0 is a scalar and dx⃗ is a
quadravector, the following expression is also a quadravector.

dP⃗ = dW

c
e⃗ ⊕ dp⃗ (5)

and by integration...

P⃗ = W

c
e⃗ ⊕ p⃗ (6)

since relation (3) can be written

dP⃗ · dx⃗ =
(

dW

c
e⃗ ⊕ dp⃗

)
(cdte⃗ ⊕ dr⃗) = −dWdt + dp⃗ · dr⃗ = 0
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The quadrivector P⃗ is called the energy-momentum vector because its coordinates have
the dimension of a momentum, so its square is invariant and constant and has dimension
[(mass) × (velocity)]2. Multiplying relation (6) by itself, we get:

(
W

c
e⃗ ⊕ p⃗

)
·
(

W

c
e⃗ ⊕ p⃗

)
= −W 2

c2 + p⃗ 2 = P⃗ 2 => p⃗ 2 = W 2

c2 + P⃗ 2 (7)

We return to relation (3), where we consider the classical definition of momentum, p⃗ =
m̃v⃗ = m̃

dr⃗

dt
. We have:

−dWdt + dp⃗dr⃗ = 0 ⇒ dp⃗
dr⃗

dt
= dW ⇒

p⃗dp⃗ = m̃dW ⇒ d(p⃗ 2)
dW

= 2m̃ (8)

We use in (8) the relation (7)....

2m = d(p⃗ 2)
dW

= d

dW

(
W 2

c2 + P⃗ 2
)

= 2W

c2 (9)

W = m̃c2 (10)

Using (10) in (7)....—

−m̃2c2 + m̃2v2 = P⃗ 2

⇓

m̃2 = −P⃗ 2

c2 − v⃗2 (11)

Here P⃗ 2 is invariant, so constant (independent of velocity), and m̃(v⃗) is the classical mass
called the mass of motion, because it depends on velocity. In the eigen-system of the

particle (for which v = 0), we have: m̃(v = 0)2 = −P⃗ 2

c2 . So the constant −P⃗ 2

c2 is the
square of a quantity, which represents the mass of the particle at zero velocity. We denote
this quantity as m0 and call it the rest mass:

−P⃗ 2

c2 = m2
0

m̃2 = −P⃗ 2

c2 − v2 = m2
0c

2

c2 − v2

m̃ = m0√
1 − v2

c2

(12)
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Energy conservation in special relativity theory

We assume that the force F comes from a scalar potential independent of time, as in
classical mechanics.

F⃗ = −∇V (13)

We overlook the fact, that the equations describing the physical system are not Lorentz
covariant, because they are generally covariant.
Then we have for kinetic energy:

Ek =
v∫

0

dW = m0c
2√

1 − v2

c2

− m0c
2 (14)

Next we have:

dW = F⃗ · dr⃗ = −∇V dr⃗ = −dV (15)

d(W + V ) = 0 => W + V = const. (16)

so the physical quantity E = W + V is conserved.
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